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Summary

The mean curvature of the influence surface of the space-time point 
appears in linear supersonic propeller noise theory and in the Kirchhoff for-
mula for a supersonic surface. Both these problems are governed by the linear
wave equation with sources on a moving surface. The influence surface is
also called the  in the aeroacoustic literature. This surface is the
locus, in a frame fixed to the quiescent medium, of all the points of a radiat-
ing surface  whose acoustic signals arrive simultaneously to an

observer at position x and at the time t. Mathematically, the  is
produced by the intersection of the characteristic conoid of the space-time
point  and the moving surface. In this paper, we derive the expression

for the local mean curvature of the  of the space-time point 

for a moving rigid or deformable surface . This expression is a
complicated function of the geometric and kinematic parameters of the sur-
face . Using the results of this paper, the solution of the govern-
ing wave equation of high speed propeller noise radiation as well as the
Kirchhoff formula for a supersonic surface can be written as very compact
analytic expressions. 
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1.0  Introduction 

The prediction of the noise high speed helicopter rotors and propellers is an
important aeroacoustic problem. Until recently there have been two
approaches in wide practice to attack this problem. The first is based on the
Ffowcs Williams-Hawkings (FW-H) equation [1] and the second is based on
the Kirchhoff method. The Kirchhoff method was suggested first by Hawk-
ings for aeroacoustic applications [2]. There are now a large number of publi-
cations on the use of FW-H equation. In general, these applications use this
equation with surface sources specified on an impenetrable surface such as a
blade surface. See the many references in various chapters of Hubbard [3]
and Goldstein [4]. A good review of the applications of the Kirchhoff method
is by Lyrintzis [5]. Ffowcs Williams also proposed to use FW-H equation
with the data specified on a penetrable surface [6, Chap.11, Sec. 10]. This
was carried out for high speed helicopter rotor noise prediction by Di
Francescantonio [7] and, independently by Brentner and Farassat [8]. This
new method essentially brings the two approaches together and appears to be
superior to the earlier approaches [8]. The point of relevance to the present
paper is that in all these methods, one has to solve the linear wave equation
with sources on a moving surface. We will address the difficult problem of
the solution of the linear wave equation with supersonic surface sources here.
As in all of our previous works, we will solve this problem in the time
domain. 

The mean curvature  of the influence surface of the space-time point

 appears in linear supersonic propeller noise theory and the Kirchhoff
formula for a supersonically moving surface [9-11]. We refer to the influence
surface as the  in this paper to be consistent with our earlier publi-
cations on the subject of linear wave propagation. Assuming that the propel-
ler blade or the Kirchhoff surface is given by the moving surface

, the  is constructed by the intersection of the charac-

teristic conoid of the space-time point  and the moving surface .

This construction is explained in the present paper in detail. The 
is, thus, the locus, in the frame fixed to the quiescent medium, of all the
points on the surface  whose acoustic signals arrive simultaneously at

x at the observer time t. Therefore, the  describes the domain of
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dependence of the space-time point  in the frame fixed to the quiescent
medium.

In our work on linear supersonic propeller noise prediction in the time
domain, many curvature terms of the blade surface appear in the theoretical
formulation [9-11]. Our experience with numerical evaluation of propeller
noise indicates that the curvature terms can contribute significantly to the pre-
dicted noise. For this reason, as well as to obtain the Kirchhoff formula for a
supersonically moving surface, we give the detailed derivation of the analytic
expression for the mean curvature of the . The derivation requires
the knowledge of classical differential geometry and tensor analysis [12-14].
In practice, the geometry and the kinematics of the moving surface 

are known. The mean curvature  of the  must be described in

terms of the known geometric and kinematic parameters of the surface
. This is achieved by first defining a local time dependent coordinate

system on the  in terms of the local coordinate system on the sur-

face . The coefficients of the first and the second fundamental forms of

the  are then written in terms of the known local parameters of the

surface . From these coefficients we construct the expression for the

mean curvature .

In section 2, we explain how the mean curvature of the  appears in
supersonic propeller noise theory and the Kirchhoff formula for moving sur-
faces. In section 3 we describe the construction of the  and how to

visualize this surface for a given observer space-time point  when the

motion and the geometry of  are specified. In Section 4, which is the
main part of this paper, we give the detailed derivation of the mean curvature

 assuming that the surface  is rigid. In a subsection, we present a

brief derivation of  for a deformable surface. Discussion of the main

results and concluding remarks are in Section 5. Here we discuss the validity
of the expression for the mean curvature and the possibility of singularity for-
mation in the acoustic field of a supersonically moving surface. 

The main mathematical reference for this paper is [15] where all the rules of
manipulation of multidimensional generalized functions used here are pre-
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sented. More details on differential geometry and Green’s function solution
of wave equation with sources on a moving surface are presented in a NASA
Technical Memorandum [16]. We use both vector and tensor notations in the
present paper where appropriate. The summation convention is also used
here. 

2.0  How the Mean Curvature of the  Appears in 
Applications

In this section, we briefly explain how the mean curvature  appears in two

problems of acoustics. The first is the supersonic propeller noise prediction
problem and the second is the derivation of the Kirchhoff formula for a super-
sonically moving surface. Both these problems are governed by the linear
wave equation with sources on a moving surface. 

2.1  The Supersonic Propeller Noise Problem 

Consider a supersonic propeller whose blades are described by
 outside the body. We assume that  is so

defined that , where n is the local unit outward normal to this sur-
face. This can always be accomplished. Using the acoustic analogy of Light-
hill, the governing equation is the Ffowcs Williams-Hawkings (FW-H)
equation. For the purpose of discussion here, we are only interested in the
surface source terms of this equation. The governing linear wave equation is,
thus, the following:

(EQ 1)

where ,  and c are the density and speed of sound in the undis-

turbed medium, respectively,  is the local normal velocity on the blade and

p is the (gage) pressure on the blade. The Dirac delta function is denoted
. We have assumed inviscid fluid medium here and have neglected the

viscous forces on the fluid at the blade surface. 
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In practice, one usually divides the propeller blade surface into panels and
then sums up the noise produced by each panel [11]. For panels where the
Doppler factor  is not small, a noise prediction formula based on the

Green’s function solution of Eq.(1) with the Doppler factor (e.g., Formulation
1A of Langley [17,18]) can be used. Here  is the local Mach number of

the surface in the radiation direction based on the speed of sound in the undis-
turbed medium. The Doppler factor appears in the denominator of this solu-
tion of Eq.(1) and, therefore, it is also referred to as the Doppler singularity.
For supersonic propellers, the Doppler factor can be small or zero for many
panels on the blade for a given observer position and time. In that case,
another solution of the FW-H equation without the Doppler singularity must
be used for noise prediction [10,11]. We present a sketch of the derivation of
this solution below.

We assume that the blade surface  is smooth. This is a simplifying
assumption which is not satisfied in practice, e.g., at the trailing edge of the
blade, but does not concern us here. See references [10,11,16] for the general
case. Using the rules of generalized differentiation [15,16,19,20], the deriva-
tives on the right side Eq.(1) are taken explicitly giving the following result:

, (EQ 2)

(EQ 3)

where  is the local mean curvature of the blade surface  and a tilde

under a variable, such as , denotes the restriction of the variable to the sur-

face f = 0. See references [15,16] for the concept of restriction. As mentioned
in references [9,15,16], the purpose of restriction of a variable to  is to
reduce algebraic manipulations as well as obtaining analytic expressions in
the simplest possible form. Using Eqs.(2) and (3) in Eq.(1), we get:

(EQ 4)

We will give the solution of the wave equation with these types of inhomoge-
neous source terms after the following discussion on the Kirchhoff formula
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for a supersonically moving surface. We mention here that it is the second
term on the right of Eq.(4) involving  which will give an integrand

depending on the mean curvature of the  when the Green’s func-
tion solution of Eq.(4) is sought.

2.2  The Kirchhoff Formula For a Supersonically Moving Surface

The need for the development of the Kirchhoff formula for a supersonically
moving surface appears in the prediction of the high speed rotor noise of a
helicopter. Even though the conventional rotor blades travel at subsonic
speed, the blade tip shock can move at supersonic speed. One possible
method of prediction of high speed rotor noise is using the Kirchhoff formula
for a moving surface. We will call the surface on which the data are specified
the Kirchhoff surface. In practice one specifies the data on the Kirchhoff sur-
face from high resolution unsteady aerodynamic calculations. Kirchhoff for-
mula based methods are showing great promise in aeroacoustics [5].

Let the supersonically moving Kirchhoff surface be described by the equation
 outside the surface and . We assume again that

 is a smooth surface. In practice, this assumption is not satisfied
because it is often more convenient to use a Kirchhoff surface with edges.
References [9] and [16] give the general result which applies to piecewise
smooth surface. Let  stand for the acoustic pressure satisfying the linear

wave equation in the region outside the surface . The governing equa-

tion for deriving the Kirchhoff formula is obtained by first extending  to the
entire space as follows:

(EQ 5)

Then,  has a discontinuity across the surface f = 0. It is seen that in the
entire three dimensional space, we have

(EQ 6)
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where all the derivatives in the wave operator are ordinary derivatives. The
generalized D’Alembertian of  gives the following equation
[9,15,16,19,20]:

(EQ 7)

where the bar over the wave operator stands for generalized differentiation
[15,19,20]. Note that in this paper we use a bar over a differentiation operator
to signify generalized differentiation only if there is the possibility of confu-
sion between the ordinary and the generalized derivatives of a function. For
example, in Eqs.(1) and (4) we have not used a bar over the wave operator
even though the derivatives in the wave operator are generalized derivatives.
It is clear from the right sides of these equations that the wave operator can
only be generalized D’Alembertian. 

Taking the derivatives on the right side of the above equation explicitly, and
using results similar to those of Eqs.(2) and (3), give the following governing
equation for deriving the Kirchhoff formula for a supersonically moving sur-
face:

 (EQ 8)

Here, as before, we have used a tilde under a variable to indicate the restric-
tion of the variable to the surface . Note that we can not drop the tildes

in , where the subscript t stands for partial differentiation with

respect to time, since  (see reference [15]). As in the case

of Eq.(4), it is the second term on the right of Eq.(8) involving  which

gives an integrand depending on the mean curvature of the  when
the Green’s function technique is applied to Eq.(8) to find the Kirchhoff for-
mula for a supersonically moving surface.

Below we will show how one interprets the solution of the wave equation
with sources involving  and .
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2.3  The Solution of Wave Equation With Sources Involving  and 
 

We now give the solution to the following two wave equations [15,20]:

(EQ 9)

(EQ 10)

Let , where  and  are

the observer and the source space-time variables, respectively. The subscript
ret stands for the retarded time and . The surface  is the

 of which more will be said in the next section. The solution of
Eq.(9) is:

(EQ 11)

where the parameter  is defined below:

(EQ 12)

Here,  is the local normal Mach number of the surface  and  is

the angle between n and the radiation direction r = x - y. 

The solution of Eq.(10) is given by:

(EQ 13)
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the , , appears in the above equation. Therefore, it appears in

solutions of Eqs.(4) and (8). Note that the mean curvature  of the surface

 also appears in Eqs.(4) and (8). This curvature depends on geometry
of the surface f = 0 which is known. We will not write the solutions to equa-
tions (4) and (8) since we have given the complete solutions in a more general
setting in our earlier papers [9,10,15,16]. However, note that the solutions of
Eqs.(4) and (8) as given here are very simple and compact analytic expres-
sions in contrast to what we have published earlier, e.g., in [11]. We will say
more on what  is and how to visualize it.

3.0  How To Construct and Visualize the 

As mentioned above the mathematical representation of the  is
given by the relation:

(EQ 14)

We give some facts and information about this surface and the way to con-
struct and visualize it in space. The characteristic cone of the wave operator:

(EQ 15)

at the point  is given by the relation:

(EQ 16)

Note that the variables of the wave operator are  which are also the
variables of the equation of the characteristic cone. These variables are called
the source (or the field) space-time variables. The vertex of the cone is at the
point  which is kept fixed in the analysis below. The space-time vari-

ables  are known as the observer variables. Equation (16) describes a

cone in space-time because if the point  is on the surface g = 0, then all
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points of the straight line joining this point to the point  are on .

This is the property of a cone. To prove this fact, note that if  satisfies

Eq.(16), then the point  where  is an
arbitrary number, also satisfies Eq.(16). But the point A lies on the straight
line joining  and  in the four dimensional space.

The wave operator in Eq.(15) has constant coefficients. Therefore, the charac-
teristic cone and the characteristic conoid at any point coincide. Equation
(16), thus, describes the characteristic conoid at the point . Remember

that  is fixed in our analysis and this point specifies the position of the
vertex of the cone and the conoid. What is the surface g = 0? Since it is
impossible to visualize a surface in four dimensions, we must keep some
variables fixed. Let us fix the source time variable  in addition to .
Then, the surface g = 0, in variable y, is a sphere in three dimensional space
with center at x and radius  for all time . The radius of this

sphere becomes zero at . As the source time variable  varies from 

to t, the radius of the sphere shrinks at the speed of sound c from  to zero.
This is why the characteristic cone g = 0 of the wave equation is called the
collapsing sphere when viewed dynamically as explained here. We will use
this terminology in the present paper.

From the theory of hyperbolic partial differential equations [21,22], the char-
acteristic conoid at the point  determines the domain of dependence of
this point on the initial and the boundary data. We can illustrate this schemat-
ically for the wave equation with constant coefficients in three space vari-
ables. The equation of the characteristic conoid is given by Eq.(16). Figure 1
shows this cone intersecting the three dimensional space, shown as planes, at
various source time . The domain of dependence of the point  is
the circular region inside the cone where it intersects the three dimensional
space at the given source time. Any data specified on this circular region
influences the solution of the wave equation at . In the problems consid-
ered here, the data are specified on a moving surface, e.g. a propeller blade,
and our wave equation has three space variables. How do we determine the
domain of the dependence of the space-time point  in this case?
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The surface f = 0 on which aerodynamic, kinematic or Kirchhoff data are
specified, moves and possibly deforms in space. Since we have reserved the
variables (x, t) for the observer, we now use the source variables for this sur-
face, that is we write . The influence surface, or the 

associated with a given observer space-time variables  is obtained by
the intersection the characteristic cone (conoid) of this point and the surface

. The mathematical description of the  is obtained by

eliminating  between  and  to get Eq.(14). The  is

easily visualizable and constructible in space. Since  is fixed,

 is a sphere for a fixed value of source time . The sur-

face  describes the frozen position of the moving body or the

Kirchhoff surface at the source time . We vary source time from  to

 and the locus of the curves of intersection of  forms a

surface in space which is the  for the space-time observer variables

. The curve of the intersection of the surfaces  is called

the  in our previous publications on rotating blade noise [15,16,23].
Figure 2 shows the collapsing sphere at a fixed source time intersecting a
helicopter blade which is assumed to be flat. Figure 3 shows the construction
of the  for only one flat blade of a helicopter rotor in forward

flight. The  is obtained dynamically by finding the  for

several source times. Note that the  is swept back for the rectangu-
lar blade planform and lies in the rotor plane. It is flat, i.e. its mean curvature
is zero, because we assumed a flat blade. In general, the surface 

is not flat and the mean curvature  of its  is not zero. In the next

section we will derive the mathematical expression for .

4.0  The Derivation of the Mean Curvature of the 

We use classical differential geometry [12-14] to derive the required mean
curvature of the . It is crucial to select appropriate variables in
deriving this result for two reasons. First, as will be seen below, the algebraic
manipulations are complicated and the selection of appropriate variables
makes these manipulations manageable. Second, we want to give geometric
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interpretation to many of the terms in the analytic expression of the mean cur-
vature. This requirement actually allows us to write the expression for the
mean curvature in the most compact form. We mention here that, since the
equation describing the  is , theoretically one

should be able to get the mean curvature  from this equation. Such an

approach, however, appears impractical because it does not satisfy the above
two requirements. First, the algebraic manipulations are intractable and the
final expression for the mean curvature is very long and complicated. This
complexity has undesirable impact on computer code development and effi-
ciency. Second, we get many terms whose geometric interpretation is unclear.
We, thus,   looked for variables which would make the derivation of the mean
curvature more direct and which would satisfy the above requirements.

4.1  The Selection of Variables

We describe the surface  by the time dependent position vector

. Here, the variables  are the Gaussian coordinates on

the surface  at the time . The  is described by the
position vector:

 (EQ 17)

where the retarded or the emission time function  is the solu-
tion of the equation 

(EQ 18)

Note that  are functions whose dependence on variables are

clearly specified. Here the function  gives the emission time of the point

with Gaussian coordinates  on the surface . Therefore,  lies

on the . We have implicitly defined the dependence of the position

vector  on  through Eqs.(17) and (18). As will be seen below, this is suf-
ficient to give us the result that we are looking for. We remind the readers that
in all the analysis in this section, the observer variables  are kept fixed.
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Let  be a surface in the three dimensional space. Denote the coeffi-
cients of the first and the second fundamental forms of this surface by

, respectively. We define the matrices  as follows:

  (EQ 19)

where  is the inverse of G. The mean curvature of  the surface is given by
the relation: 

 (EQ 20)

where . We have used the summation convention on repeated

index here. Let , then the element of the surface area is given

by

(EQ 21)

The above results are in books on classical differential geometry [12-14]. We
have given a summary of the useful differential geometric results in reference
[16]. Below, we use Eq.(20) to derive the mean curvature of the .

Remark: We use primed symbols to denote the geometric parameters of the
 whereas the unprimed symbols are reserved for the parameters on

the surface .
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(EQ 22)

From Eq.(17), we find

(EQ 23)

From Eq.(18), we get

(EQ 24)

where  and . Here M is the local

Mach number of the surface  given by the following relation

(EQ 25)

Note that this vector is unambiguously defined even for a deforming surface.
Using Eqs.(24) and (25) in Eq.(23), we get

(EQ 26)

From this relation, we construct the coefficients of the first fundamental form
of the  in terms of known quantities on the surface  as fol-
lows:

(EQ 27)

where  is the coefficients of the first fundamental form of the

surface ,  is the covarient component of M with respect to

the natural basis vectors on the surface , and . Note that 
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depends on the geometric parameters of the surface , the kinematic

parameters as well as the radiation direction .

From Eq.(27), we find the determinant of the coefficients of the first funda-
mental form of the . The derivation of this result involves much
algebraic manipulations. The final result, however, is simple and it is

(EQ 28)

where  is given by Eq.(12) and  is the determinant of the first funda-

mental form of the surface . Now we use this equation to relate the

element of surface areas  and  of the  and the surface

, respectively. This relation is obtained from the determinants of the
coefficients of the first fundamental forms on these surfaces and using
Eq.(21). It is

(EQ 29)

This very useful result was originally obtained by the first author using a geo-
metrical method [23].

We can now find the elements  of the inverse of the matrix

.These are defined as follows

(EQ 30)

We have given  and  above in Eqs.(27) and (28). We introduce two

new vectors tangent to the surface : 

 (EQ 31)
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in order to write  in contravariant tensor form. We note that the contravar-

iant components of the vectors  are given by the relations

, (EQ 32)

, (EQ 33)

respectively. We can then write  as follows:

 (EQ 34)

We will use this result in the next subsection.

Remark: We clarify an important point about notation here. What is the
meaning of the parameters of the surface  on the  in the

above equations? The  is given by  where the

observer variables  are fixed. An emission time is associated with each

point y on this surface. This emission time is given by . At this

instant, the surface  intersects the  along a curve which we

called the  (see Figs. 2 and 3). All parameters of the surface 

at the point y on the  are calculated at the emission time of the

point y. This means that a parameter such as  in Eq.(29) is evaluated as

follows:

(EQ 35)
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there is no ambiguity in the interpretation of the dependent variables as we
have written them here. As explained below, differentiation of the dependent

variables with respect to variables , however, needs more care.       

   

4.3  Coefficients of the Second Fundamental Form of the 

The coefficients of the second fundamental forms of the surface  and

the  are defined by the relations:

(EQ 36)

where N is the unit normal to the  which is given by

  (EQ 37)

The subscripts of y and  denote differentiation with respect to variables

. As will be shown below, the derivation of the analytic expression

for  requires considerable amount of algebraic manipulations. The reason

is the dependence of the emission time on the variables . Thus, for

any independent variable defined on the , e.g. n above, we have

(EQ 38)

where the emission time function  is given by Eq.(18). Here, on the right of
the second equality sign, we have taken the unit normal n as a function of

variables . Note that  and 

are two different functions- the former is defined on the surface  and

the latter on the . Strictly speaking, we should use different sym-
bols for these functions but this is not done in practice because it leads to pro-
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fusion of symbols which can be annoying. We should warn the readers that
this practice, common as it is, can lead to confusion at times in wave propa-
gation problems. For this reason, we have made an exception to the usual
practice for one symbol that appears very often in our work. We introduced
the symbol  for the retarded time function  in place of which we could have

used the same symbol as the source time .  We have reserved  for an inde-
pendent variable.  

To reduce the risk of confusion in interpreting a partial differentiation with

respect to , we specifically indicate this on the  as follows

. This means that the independent variable is a function of

. However, we use the notation  for partial differentiation

of an independent variable which is a function of  on the surface

. There is no confusion for the partial derivative  which applies

only to the independent variables on . Note that on the ,
differentiation with respect to the source time is meaningless since the inde-
pendent variables on this surface are not functions of .

By taking the derivative with respect to the variable  of both sides of Eq.
(23) and after much algebraic manipulations and simplifications, we get

 (EQ 39)
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Here  is the Christoffel symbol of the second kind,  is the angle between

n and the radiation direction , and . We have summed some

terms on the right sides to get  in the numerator of the second term

because in obtaining the mean curvature of the , we must multiply

 with  as will be seen later. Therefore, this summation reduces some

algebraic manipulations.

4.4  The Mean Curvature of the Surface for a Rigid Moving Surface 

So far we have not assumed that the surface  is rigid. All the above
results are valid for a deformable surface. Now, we will make the assumption
of rigidity of the surface. In applications that we have in mind, the surface

 is always rigid, e.g., the surface of a propeller or rotor blade. The
Mach vector distribution of the surface can be written as

 where  is the velocity of a reference point on

the surface,  is the position vector of a point on the surface from the refer-

ence point, and  is the angular velocity of the surface. We note that when 

is fixed, we can assume that y and  coincide and, thus, we get

. Using the definition of the second fundamental form,

Eq. (36), we obtain from Eqs. (37) and (39):

      (EQ 40)
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and  is given by Eq. (12). We are now ready to find the mean curvature of

the  for a rigid moving surface.

From the definition of the mean curvature, Eq. (20), using primed variables 
for the , we obtain the following expression for :

(EQ 42)

Here we have used the following definitions of the symbols:
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=  

=    
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 and  are the components of  and  (see Eq.(31)) in princi-
pal directions with respect to unit basis vectors

Equation (42) is the main result of this paper. This result was derived and
announced by the first author in 1996 [16] but the derivation has not been
published. The second author independently verified the final result through
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a slightly different approach. The extension to the deformable case was also
carried out by the second author which will now be presented. 

4.5  The Mean Curvature of the Surface for a Deformable Moving 
Surface

If we assume the surface  is deformable, then we get a slightly more

complicated expression for the mean curvature of the . In the deri-
vation of the mean curvature formula, Eq.(42), the rigidity hypothesis was
first introduced during the computation of the second fundamental form,
Eq.(40). In order to avoid this restriction, we begin by rewriting Eq.(39) as
follows:

(EQ 43)

Here T is a linear operator defined by 

(EQ 44)
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we can show . From Eq. (43), we get

(EQ 45)
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(EQ 46)

Here the operator L is based on the coefficients of the second fundamental

form defined as  and the vector  is the projection of

the unit radiation vector  on the local tangent plane to the surface .

Note that .

For a deformable surface, a new problem appears which must be addressed
carefully. Note that for the case of a rigid surface, all quantities on the right
side of Eq. (42), or equivalently Eq. (46), all surface coordinates are indepen-
dent and all the velocities are unambiguously defined. In the case of a
deformable surface, we must show that if two surface Gaussian coordinate
systems slide with respect to each other, then the mean curvature of the

 is independent of the tangential Mach numbers of the two coordi-

nate systems. The terms of the mean curvature expression for the 
of a deformable surface can be written in such a way that the tangential Mach
number of the coordinate system is taken out. In order to accomplish this, we
decompose M into its normal and tangential components on the surface

 denoted  and , respectively. We then separate the mean curva-

ture expression into pieces that involve these normal and tangential compo-
nents separately. We also remove the explicit dependence on the vectors 

and  by using the identity

(EQ 47)
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(EQ 48)

where  and  are the normal curvatures of the surface  in the

directions of  and , respectively. We have used the fact that

, where  is the normal curvature of  in the

direction of the tangential vector V.

In Eq. (48), everything is clearly independent of frame of reference except,

apparently, for the expressions  and

.It turns out that these expressions are also indepen-

dent of frame of reference. In fact, it can be shown that 

(EQ 49)
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(EQ 50)

Although Eqs. (49) and (50) show that the mean curvature expression Eq (48)
is independent of the coordinate system chosen, Eq. (48) as it stands might be
more suitable for use in practice.

Now that we have derived the analytic expression for the mean curvature of
the , we can write the solution of the FW-H equation and the
Kirchhoff formula for a supersonically moving surface in a very compact
way using Eqs.(11) and (13) in the solution of the wave Eqs.(4) and (8). We
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feel that by relating the mean curvature of the  to the geometric

and kinematic parameters of the surface , we have derived useful for-
mulas for applications in aeroacoustics.

5.0   Discussion and Concluding Remarks

The mean curvature of the  is a very complicated expression and
there is little hope that for moving surfaces of engineering interest one can
obtain an analytic result given the geometry and the history of the motion of
the moving surface . A simple but not sufficient test of validity of HF

is that for a stationary surface, one should get HF = Hf. This can be easily

established from Eq. (42). However, numerical test of this result is possible
for a given smooth surface in rectilinear and rotating motion. Note that the
mean curvature of the collapsing sphere is . As seen from Eq. (42), only

the first term of the mean curvature of the  depends on the mean
curvature of the collapsing sphere. 

One of the main reasons for studying the mean curvature of the 
has been to explain the complexity and the appearance of normal curvatures
of the surface  in many directions in Formulation 3 of Farassat used
for supersonic propeller noise prediction [11]. It is now clear that Formula-
tion 3 can be written in a much more compact form using the mean curvature
of the . The procedure for the derivation of this compact formula
has been outlined in Section 2 of this paper. Such a formula will simplify
coding for noise prediction by calculating HF in a separate subroutine. We
have made further progress in finding a very simple solution of Eq. (10)
which does not depend on the mean curvature of the  [24]. We
feel, however, that the solution involving the mean curvature discussed here
is fundamental and it will lead to further understanding of noise generation
from moving surfaces.   

There is one important point that must be mentioned in connection with the
solution of the wave equation of Eq. (10). When the collapsing sphere leaves
the surface f = 0 at a point where , then one gets  in the

denominator of the integrand of the solution of Eq. (10) given by Eq. (13).
This can lead to infinite singularity in the acoustic pressure . Based on a
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recent study by Farassat, Brentner and Dunn [24], it can be shown that in Eq.
(13), there is a cancellation of the highest order of  singularity between
the first and the second terms in the integrands on the right side of the equa-
tion. Because of the particular structure of  in the governing equation

of the Kirchhoff formula [24], the acoustic pressure calculated from the
Kirchhoff formula is finite for all time. Similar situation exists for the FW-H
equation if we add the surface terms coming from the quadrupole source term
to the thickness and loading terms [24]. However, noise calculation based on
the thickness and loading terms alone for supersonic blades with blunt lead-
ing edge can result in infinite acoustic pressure.
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Figure 1. Schematic diagram of the characteristic cone (conoid) of the
observer space time variable (x, t) and its domain of dependence (DOD).
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Figure 2. The collapsing sphere intersecting a rotating blade at the source
time . Note that the collapsing sphere is the intersection of the characteristic

cone (conoid) of (x, t) with the three dimensional space at the time . 

Figure 3. The construction of the  for a flat rectangular rotor

blade. The rotor is moving forward at the velocity  in such a way that all

points on the rotor travel at subsonic speed relative to the speed of sound in
undisturbed medium. The  will be more complicated and even in
several pieces if part or all the blade surface travel at supersonic speed
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